Applicability of object-based storage
devices In parallel file systems

Pete Wyckoff

Ohio Supercomputer Center
pw@osc . edu

HECURA Showcase 7 aug 07



Vision

 Processors faster, disk densities up, but I/O

rates comparatively flat
* Leverage intelligent peripherals to improve
scalability, managability, performance

Serverless parallel distributed file systems



Motivation

 OSDs offer higher-level semantic interface
e Secure, direct access of storage by clients

* Our work
— Examine role of OSDs in parallel file systems
— Analyze trade-offs of using OSDs for various
aspects of parallel FSes
— Develop extensions required for efficient use of
OSDs in HPC parallel environments



Traditional Model OSD Model

Applications Applications
ystem Call Interface ystem Call Interface

File System File System
User Component User Component

System St
ystem slorage OSD Interface

I

I

I

I

I

I

File I
I

Management |
-

OSD Storage
Management

|
|
|




Mapping Data to Objects

Block-based "objects" are 512 bytes
OSD objects could be files
For striped files, object Is stripe, or stripe set?

Collection feature allows grouping objects

— fast searching
— choose object boundaries to coincide with search

Delegating object creation to clients

When to create objects on create?
- lazy, preallocate




Metadata

 OSDs store attributes with objects

 How do parallel FS attributes map to these?

- uid, gid, perm, [acm]time, type
 mtime of object vs mtime of file

— data distribution: mapping of bytes to objects
- POSIX extended attributes

 Managing collective behavior
— object allocation, fsck, rebalancing

e Select objects by attribute
— collections for indexing applied to metadata



Directories

» Familiar form of data organization

* NO consistency to relax for directories

* Need overall sequential behavior for any single
directory

e For passive targets, this may be impossible



Progress

» Full stack for OSD work
— Initiator library
- ISCSI target
- OSD emulator

» Parallel file system using OSDs

v Phase 1: datafile
e Striping, handle mapping, object management

v Phase 2: metafile
* handle mapping, metadata storage, distributions

- Phase 3: directory
e atomicity, tree layout, POSIX corner cases



Initiator larget

MPI App App OSD Command Processor

I A A A

MPI-1/0

I SQLite

I ,

OSD Library ISCSI (tgt)

User Space
‘ Kernel Space L
iISCSI ext3

| ,

TCP/IP (uuummumum} TCP/IP

.




Initiator

Create CDBs

Submit commands

Retrieve results

Generate and parse get/set attributes
Device enumeration and mapping
Python interface and basic unit tests

Use "bsg" interface to SCSI midlayer (+ fixes)
- extended CDBs

— bidirectional

- lovec

Use "bidi" patches from Panasas (+ fixes)

Why not Intel or IBM Initiators?
— reliance on old kernel APlIs
— non-bidirectional



Target

e Use "stgt" for SCSI and ISCSI
— all userspace
- leading approach for linux adoption
— active development
 Many changes to stgt, most merged
- OSD target command processing
— ISCSI bidirectional implementation
- ISER (ISCSI/RDMA) implementation
- bug fixes
* \WWhy not kernel-based ISCSI target?
- not the linux way
- living In out-of-tree modules is difficult



OSD Target Emulator

* Processes the commands delivered by stgt

« Command categories
— object manipulation (done)
— attribute manipulation (done)
- 1/O (done)
— security (not done)
- device management (partial)
— collections (soon)

* Object storage
- via POSIX and ext3: pread, pwrite

o Attributes
- via SQLite, full SQL implementation
— complex operations very succinct and fast



Other OSD Target Emulators

* IBM ObjectStone

— binary-only x86-32 blob
— cannot modify or evaluate

* Intel uosd
- very simple, single-file implementation
- only 8 basic commands
— each attribute stored in a separate file

e Du, UMN
— extensions to Intel

— added extensive security infrastructure
— same attribute implementation



metadata metadata metadata metadata OSD OSD OSD
server server server server server server server data data data

{ System Area Network J { System Area Network

client client client \ client client client client client \ client client

directory OSD OSD OSD OSD OSD directory OosD OosD OosD
server meta meta data data data server meta+data meta+data meta+data

{ System Area Network { System Area Network

client client client \ client client client client client \ client client




Processing phase

SQLite 81.3 £ 0.3 us
CDB 2.2 0.5 us
1SCSI 29.9 4+ 1.7 us
Initiator 125.6 £2.9 us




Stat operation

—8— 0SD
—o— |/O server

6 8 10
Number of I/O elements

12

14

Create operation

—=— OSD
—o— |/O server

10
Number of I/O elements

/,/
_1l

/// s | d
/////// JUIU.



Storage on disk Storage on RAM

——o— |/O server ——oc— /O server

Aggregate throughput (creates/sec)

3
@
(&
=
@
@
g
@
o
A
XS5
=
]
a
<
o
=]
o
P
e
£
@
2
@
o)
@
S
o)
o)
<

6 8 10 6 8 10 12 14
Number of clients Number of clients




w0
~
m
=3
=
5
Q.
<
(o))
]
)
<
'_

PVES I/O server

—o— Read
—&— Write
—a&— Write+Sync

I/O Size

Throughput (MB/s)

——o— Read
—&— Write
—a&— Write+Sync

1 MB
I/O Size




Throughput (MB/s)

PVES I/O server

—&— Write
—=&— Write+Sync
—o— Read

Number of I/O Servers

Throughput (MB/s)

Number of OSDs

—&=— Write
—=&— Write+Sync




BTIO Class B

I/O server I
OSD Il

9 16
Number of Processors

BTIO Class C

I/O server Il
OSD Il

9 16
Number of Processors



I/O server I
OsSD Il

0
9
8
7
6
5
4
3
2
1
0

5 10
Number of Processors




Major Accomplishments

 Use OSDs natively in a real parallel file system

* |nfrastructure for OSDs
— Library for OSD commands at initiator
— Emulator for OSD target
- ISCSI over RDMA for performance

* Revisit assumptions in PFS architecture
— separate data and metadata
— servers In the data path
- servers at all



Barriers

 PVES server functionality assumptions
- handle mapping
— server-initiated operations (soon)

e Other parallel FS assumptions
— Ceph: servers forward write data to other servers
— Lustre: byte-range locking, callbacks
- Panasas: closer fit
- NFSv4:. OSD mapping exists (datafile only)

e lack of OSD hardware

e need for OSD extensions
— atomic operations
— scatter/gather on server
— server-chosen retrieved attributes offset



Publications

* Integrating parallel file systems with object-

based storage devices

- SCO07, Reno, NV, November 2007

- system design, PFS mapping, PVFS impl.

- overheads, metadata scaling, 10 throughput, apps
» Attribute storage design for object-based

storage devices
- MSSTO7, San Diego, CA, September 2007
— detalls on SQL use In metadata storage
* ISER storage target for object-based storage

devices
- MSSTO7 SNAPI Workshop, San Diego, Sept 07
- ISCSI over RDMA

 Metadata design paper
- to FASTO0S8, due Sep 07



Stalff

* Pete Wyckoff
- PI, 25+% time
- Initlator and PVFS lead
* Ananth Devulapalli
— OSC staff, 25+% time
- target lead
e Dennis Dalessandro
- OSC staff, 25% time
- network lead



Students

 Nawab Ali
- OSU graduate student, CS, 2nd year, half time

— advisor: P. Sadayappan
— parallel FS metadata design
» Paul Betts
- OSU undergraduate, senior CS, 15 hr/wk
— Initiator kernel module, python interface

* Alex Moore
- OSU undergraduate, senior CS, 15 hr/wk
- target attribute handling

 Tim Arnold

- OSU undergraduate, sophomore physics, 15 hr/wk
- LIST, collection functions



Conclusion

* Enable higher semantic interface to storage

 Avoid middle-box interference on data path

* Understand roles of clients, metadata servers,
O servers, lock servers, etc in parallel FSes

» Actively sharing code with
- Panasas
- Seagate
- Fujitsu
 Goal: build a single shared OSD environment to
encourage research by ourselves and others



